Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Sens ; 6(3): 1067-1076, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33629586

ABSTRACT

In vitro diagnostics relies on the quantification of minute amounts of a specific biomolecule, called biomarker, from a biological sample. The majority of clinically relevant biomarkers for conditions beyond infectious diseases are detected by means of binding assays, where target biomarkers bind to a solid phase and are detected by biochemical or physical means. Nonspecifically bound biomolecules, the main source of variation in such assays, need to be washed away in a laborious process, restricting the development of widespread point-of-care diagnostics. Here, we show that a diffractometric assay provides a new, label-free possibility to investigate complex samples, such as blood plasma. A coherently arranged sub-micron pattern, that is, a peptide mologram, is created to demonstrate the insensitivity of this diffractometric assay to the unwanted masking effect of nonspecific interactions. In addition, using an array of low-affinity binders, we also demonstrate the feasibility of molecular profiling of blood plasma in real time and show that individual patients can be differentiated based on the binding kinetics of circulating proteins.


Subject(s)
Proteins , Biomarkers , Humans
2.
Pharmaceutics ; 12(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927792

ABSTRACT

Standard experimental set-ups for the assessment of skin penetration are typically performed on skin explants with an intact skin barrier or after a partial mechanical or chemical perturbation of the stratum corneum, but they do not take into account biochemical changes. Among the various pathological alterations in inflamed skin, aberrant serine protease (SP) activity directly affects the biochemical environment in the superficial compartments, which interact with topically applied formulations. It further impacts the skin barrier structure and is a key regulator of inflammatory mediators. Herein, we used short-term cultures of ex vivo human skin treated with trypsin and plasmin as inflammatory stimuli to assess the penetration and biological effects of the anti-inflammatory drug dexamethasone (DXM), encapsulated in core multishell-nanocarriers (CMS-NC), when compared to a standard cream formulation. Despite a high interindividual variability, the combined pretreatment of the skin resulted in an average 2.5-fold increase of the transepidermal water loss and swelling of the epidermis, as assessed by optical coherence tomography, as well as in a moderate increase of a broad spectrum of proinflammatory mediators of clinical relevance. The topical application of DXM-loaded CMS-NC or DXM standard cream revealed an increased penetration into SP-treated skin when compared to untreated control skin with an intact barrier. Both formulations, however, delivered sufficient amounts of DXM to effectively suppress the production of interleukin-6 (IL-6), interleukin-8 (IL-8) and Thymic Stromal Lymphopoietin (TSLP). In conclusion, we suggest that the herein presented ex vivo inflammatory skin model is functional and could improve the selection of promising drug delivery strategies for anti-inflammatory compounds at early stages of development.

SELECTION OF CITATIONS
SEARCH DETAIL
...